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1. Introduction 

The Operating System (OS) Friendly Microprocessor Architecture’s (OSFA’s) 
goals are to provide a high-performance microprocessor and reduce the code 
complexity of an operating system. We have developed a computer architecture 
that reduces the high cost of a context switch and provides hardware-based 
computer security. A context switch can be as fast as 1 central processing unit 
(CPU) cycle. 

Figure 1 introduces the OSFA.1–2 The processor memory and bus architecture is an 
extended Harvard architecture. The OSFA1 uses pipeline memory controllers to 
rapidly background switch cache memory pages. The pipeline memory architecture 
supports hardware-based OS context switches. Context switches for lightweight 
threads can be as fast as 1 CPU cycle. 
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Fig. 1 OS friendly microprocessor architecture 

OS information assurance is implemented in hardware. By extending the traditional 
Unix file permissions bits down to each memory cell, each cache line, and each 
cache memory bank, the OSFA processor provides hardware-based computer 
security. 
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1.1 OS Friendly Microprocessor Architecture Permission Bits 

A unique feature of the OSFA is the permission bit Index_Register_I/O 
(IRegIO). IRegIO allows the OS to provide an index register pointing to an 
input/output (I/O) port or I/O memory address. The IRegIO bit “locks out” the 
memory address pointer (index register) from being read, written to, or modified. The 
running process is prevented from accessing the contents of the register; however, the 
process can use the index register (pointer) to read/write to I/O (registers, ports, or 
addresses).  

The hardware permission bits can be set to allow real-time software debugging. 
Program debugging can use the R W M permission bits (Read = allowed, Write = 
not allowed, and Modify = not allowed) to trap all writes made to a memory address 
or register. This allows for hardware level debugging with zero performance 
overhead at the software level until a write occurs. 

Library function protection is provided by extending the principal of least privilege 
to library function calls. For each software application, a table sets limits (white 
list) for all OS function calls required by the application. The library function call 
table sets limits for typical load, moderate load, and maximum load. Exceeding the 
limits for typical load, moderate load, and/or maximum load can be set to generate 
an exception or require higher than user level privileges. 

Sections 2 through 5 cover the OSFA. Section 6 covers computer security, 
information assurance, and permission bits. 

1.2 Bus Architectures 

There are 2 commonly used microprocessor bus architectures. The von Neumann 
architecture consists of a unified instruction (program) and data memory. The 
combined memory contains both data and instructions. Newer microprocessors 
incorporate a no-execute bit in cache memory tables to prevent data from being 
executed. A Harvard bus architecture has separate instruction (program) memory 
and data memory. A modified Harvard architecture has internal separate caches for 
instructions (program) and data with a combined (unified) external memory. 
Figure 2 compares von Neumann and Harvard bus architectures. Note, the Harvard 
architecture allows for parallel memory operations over the 2 busses and memories. 
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Fig. 2 von Neumann and Harvard bus architectures 

Figure 3 compares computer memory types and approximate memory sizes for 
2013. Register memory is the fastest memory inside a computer. Register memory 
typically is small. Level 1 (L1) and level 2 (L2) memory caching are contained on-
chip inside the microprocessor. Level 3 (L3) memory caching can be on or off chip. 
Main memory is present on the main or system computer board. Hard drives and 
tape backups represent mass storage memory. The memory types from register to 
mass storage span a range of approximately 1011 or more. 
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Fig. 3 Computer memory types and sizes 

2. In-Band Signaling, the Open Front Door  

In-band signaling is an open front door. There is no user authentication for control 
information. A black hat or prankster only needs the tools to provide the in-band 
control signals to the network system. 

Telephone in-band signaling combines voice (data) and control information on a 
telephone line. The papers by Weaver and Newell3 and Breen and Dahlbom4 
provided the technical details for controlling the telephone network. In-band 
signaling provides the open front door to send control information over the phone 
line. Back in the 1970s, before the telephone companies switched to out-of-band 
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signaling, a blue box generated the control tones (codes) to control the telephone 
network. A “blue box”5 built by Steve Wozniak is on display at the Computer 
History Museum.6 The average electronics hobbyist could easily build a blue box. 
Blue box phone calls were free. It did not take long for “free” blue box phone calls 
to become illegal.   

The classic buffer overflow error, unfortunately all too common in modern 
programming, presents an opportunity for a black hat to place control information 
inside and gain control of a computer. The control information could be a line of 
code to jump to a computer virus or other malware application. 

Caller ID does not have any authentication. A prank caller can easily spoof Caller 
ID. Caller ID uses a 1200 Hz frequency shift keying, Bell 202 modem7 to send 
caller ID information. An “orange box” generates the spoofed Caller ID string8 for 
the telephone network. In-band signaling is an open front door for controlling, 
spoofing, and/or hacking a system. 

The OSFA’s information assurance goal is to completely separate control and data 
at the hardware level. The objective is to raise the difficulty level to hack a computer 
system. Keep in mind that claiming a system is unhackable is like creating an 
unsinkable ship. Current computer security best practices are based on a risk 
analysis and cost/benefit analysis. 

3. OS Friendly Microprocessor Architecture 

This section describes the OSFA’s cache bank architecture. Section 5 covers the 
cache bank and memory cell hardware permission bits. 

The OSFA uses an extended Harvard architecture as illustrated in Fig. 4. In a 
Harvard architecture (see Fig. 2), there are separate busses and memories for 
instructions (programs) and data. The OSFA uses 4 separate busses and memories 
for high-speed context switching and hardware-level information assurance. A 
modified extended Harvard architecture has a unified external memory with 
separate internal caches. A context switch only requires cache banks to be 
connected and disconnected to the execution pipeline. Cache bank contents are 
background copied to and from L1 caching while the execution pipeline is running 
another process or thread.  
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Fig. 4 OS friendly microprocessor architecture 

3.1 DMA/Cache Bank Controller Architecture 

The OSFA in Fig. 5 consists of 4 DMA/cache controller banks (Instruction, Data, 
Register, and Pipeline State), connected to a microprocessor execution pipeline. 
The OSFA is a set of memory blocks (stages) in a pipeline configuration. The 
DMA/cache controller banks (instruction, data, register, and pipeline state) connect 
to internal level 1/level 2, and such, caching through busses. Internal caches connect 
to external caches and external memories. The OSFA can also use a unified external 
memory architecture similar to a modified Harvard architecture (internal separate 
caches for instructions and data, and a unified external memory). 
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Fig. 5 OS friendly DMA controller and cache bank controller pipeline architecture 
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L3 caching, and external main memory can now run at a lower clock frequency, 
significant power savings results without decreasing processor performance.  

Figure 6 illustrates the OSFA Version 11 write (copy) and read (load) cache bank 
operations for processes n – 1, n, and n + 1. OSFA Version 2 2 removes the parallel 
memory copy (see Section 4.3.2). We use sequential numbers to simplify Fig. 6. In 
an actual system, the process identification (PID) numbers would be arbitrary. The 
load (read) and write (copy) cycles for each cache bank (instruction, data, register, 
and pipeline state) are shown. This is a worst-case example showing cache writes 
and loads for each context switch. Data locality would limit the number of writes 
and loads resulting in more time to copy memory, allowing for more power savings. 
Fully parallel memory copy operations, for the pipeline state cache bank, are shown 
(OSFA Version 1). The “Bank(m)” notation refers to cache bank number (m) or a 
set of bank numbers (m)’s. The instruction, data, register, and pipeline state cache 
controller banks consist of cache banks in 1)  active use by the execution pipeline: 
instruction.act, data.act, register.act, and pipeline_state.act; 2) swapping set cache 
banks (instruction.swp, data.swp, register.swp, pipeline_state.swp) in use by 
instruction, data, register, and pipeline state DMA controllers as illustrated in 
Figs. 5 and 6; and 3) inactive cache banks: instruction.ina, data.ina register.ina, 
and pipeline_state.ina not in use by execution pipeline and not in use by DMA 
controllers in Fig. 5. 

 

Fig. 6 OS friendly microprocessor architecture context switch timing diagram 
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At process n’s start, the active pipeline state cache bank (pipeline_state.act) is 
copied in parallel (OSFA Version 1) into the execution pipeline latches. At the end 
of context for process n, the pipeline state latches (OSFA Version 1) are copied in 
parallel to the active pipeline state cache bank (pipeline_state.act). During context 
time for process n, the inactive cache banks instruction.ina, data.ina, register.ina, 
and pipeline_state.ina are idle. For process n – 1, the swapping set cache banks 
instruction.swp, data.swp, register.swp, and pipeline_state.swp are copied to L1 
level caching as shown in Figs. 5 and 6. The swapping set cache banks currently in 
L1 cache memory, instruction, data, register, and pipeline_state, for process n + 1 
are loaded into cache banks instruction.swp(n + 1), data.swp(n + 1), 
register.swp(n + 1), and pipeline_state.swp(n + 1), to prepare to execute process 
n + 1 during the next context time.  

At end of context for process n, the active process n cache banks are set to swapping 
set cache banks: instruction.swp(n) = instruction.act, data.swp(n) = data.act, 
register.swp(n) = register.act, and pipeline_state.swp(n) = pipeline_state.act. After 
context switching from process n to process n + 1, the swapping set cache banks 
for process n + 1 are set to active: instruction.act = instruction.swp(n + 1), 
data.act = data.swp(n + 1), register.act = register.swp(n + 1), pipeline_state.act = 
 pipeline_state.swp(n + 1). The cache banks instruction.act, data.act, register.act, 
and pipeline_state.act and now in use by execution pipeline. Figures 5 and 6 
illustrate how the instruction, data, register, and pipeline_state DMA controllers 
run in parallel with the execution pipeline.  

3.3 Cache Bank Architecture 

The instruction, data, and register cache bank controllers and cache banks only need 
to write one word (n bits) at a time. Conventional microprocessors have a small 
number of registers: on the order of 16–128. The OSFA envisions a much larger 
number of registers. We envision instruction and data cache banks on the order of 
128,000 or larger and register cache banks on the order of 1000 or larger. The 
pipeline state cache bank is on the order of 128–1000. Figure 3 compares the sizes 
of memories and caches for conventional architectures. 

3.3.1 OS Friendly Microprocessor Architecture Version 1 Cache Bank 

For OSFA Version 1, the pipeline state cache controller and cache banks need to 
be able to read or write to all of the pipeline stage latches in parallel. Figure 6 
illustrates, the parallel load (read) and write operations for the pipeline state cache 
controller and cache banks. OSFA Version 2, in Section 4.3.2, removes the parallel 
read/write required for Version 1. 
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Figure 7 shows the cache controller and cache bank architecture for the instruction, 
data, and register banks for OSFA Versions 1 and 2. The bank selection controller 
provides arbitration to prevent the DMA controller and microprocessor execution 
pipeline from accessing the same cache bank at the same time. This separation 
allows the DMA to transfer cache memory pages to L1 caching in the background 
while the microprocessor pipeline is executing instructions. The bank address 
controller sets the cache bank memory addresses for the swapping set cache banks 
(instruction.swp, data.swp, and register.swp) and the active cache banks 
(instruction.act, data.act, register.act and pipeline_state.act). The read/write 
controllers set the data direction for the swapping set cache banks and the active 
cache banks.  
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Fig. 7 Data, instruction, and register cache controller banks 

Figure 8 shows the pipeline state cache controller and cache banks for OSFA 
Version 1. The pipeline state cache bank controller and DMA cache bank controller 
provide arbitration preventing the DMA controller and pipeline state (pipeline stage 
latches) from using the same cache bank at the same time. This separation allows 
the DMA to transfer a pipeline state cache memory bank to L1 caching in the 
background while the microprocessor pipeline is executing instructions. At the start 
of a context, as shown in Fig. 6, the active pipeline state cache bank 
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(pipeline_state.act) is copied into the pipeline state (pipeline stage latches) in 
parallel in a single CPU clock cycle. At the end of a context, the pipeline state is 
copied in parallel in a single CPU clock cycle to the active pipeline state cache bank 
(pipeline_state.act). 
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Fig. 8 Pipeline state parallel cache controller banks 

3.3.2 OS Friendly Microprocessor Architecture Version 2 Pipeline State 
Cache Bank 

For the OSFA Version 2, the 8 memory latches are included in each pipeline stage 
as shown in Fig. 9. For example, for process n, Latch4 is currently in use. To switch 
to process n + 1, Latch4 is disconnected from the pipeline stage, and another latch, 
for example Latch2, is connected. The latches used by process n may now be 
background copied to L1 cache sequentially from stage 0 through stage (m – 1) (all 
of the pipeline latches) during context n + 1. The Version 2 pipeline state 
DMA/cache controller pipeline offers the same processor performance as Version 1 
while requiring less power.  
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Fig. 9 OS friendly microprocessor architecture version 2 pipeline state cache banks 

3.4 OS Friendly Microprocessor Architecture Performance 
Modeling 

The OSFA1 offers new opportunities for increased performance and decreased 
power consumption by providing hardware features to reduce the OSs cost for 
managing resources. Sections 4.4.1–4.4.3 develop a first-order approximation of 
the potential improvements in OS Friendly Microprocessor Architecture’s context 
switch performance. Conventional microprocessor performance models are based 
on the research from Vangal et. al.9 and Mudge.10 

3.4.1 Conventional and OS Friendly Microprocessor Architecture 
Context Switch Modeling 

Sections 4.4.2 and 4.4.3 estimate the context switch time required for a 
conventional architecture and the new OSFA. The OSFA significantly improves 
the context switch time and uses less power. The high-level representations for 
conventional and improved OSFA architectures are shown in Figs. 10 and 11. 
These figures assume the following architectural characteristics. First, the internal 
designs of the execution pipelines in the 2 architectures are the same. The model 
for the OSFA execution pipeline in Fig. 11 uses the same execution pipeline as the 
conventional architecture in Fig. 10. The labels inside the pipeline stages (labeled 
“PS”) refer to the stages to which the following sections reference (EX: Execution 
Stage, MEM: Memory Access Stage, and WB: Writeback Stage). Next, it is 
assumed that the pipelines in both architectures, OSFA and conventional, operate 
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at a fixed voltage VP_H with clock period tS. The Register File Set (RFS), active 
register cache bank (register.act), and the active pipeline state cache bank 
(pipeline_state.act) normally operate at voltage VR_H with clock period tS. For 
power improvements, the OSFA can dynamically scale down both the voltages and 
clock rates of the inactive and swapping cache controllers and cache banks. The 
voltage of inactive and swapping cache controllers and cache banks can be reduced 
to some value VL, while the clock frequency (clock period) of these components 
can be reduced (clock period increased) to some value, clock frequency fL, or clock 
period  tL. 

Memory/Cache Controller

EX

MEM

WB

R
eg

is
te

r F
ile

Conventional Architecture
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Fig. 10 Conventional processor architecture model 
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Fig. 11 OS friendly microprocessor architecture model 

3.4.2 Conventional Architecture Context Switch Modeling 

This section presents the steps taken by conventional processor architecture in 
Fig. 10 to perform a context switch. Each step requires a certain period of time, 
which is determined by the amount of work required by the step, the clock rate of 
the components involved, and the parallelism exploited by these components. All 
components of the conventional architecture operate with the short clock period ts. 
The steps involved in a context switch for the conventional processor are shown in 
Table 1. 
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Table 1 Conventional architecture context switch steps 

Step Description 

Step 1 Flush the pipeline state out to the register file. 

Step 2 Write out each register value to memory. 

Step 3 Bring the OS register state back into the register file. 

Step 4 Refill the pipeline with the OSs pipeline state. 

Step 5 Execute the standard OS operations. 

Step 6 Flush the OS pipeline state to the register file. 

Step 7 Write out each register value to memory. 

Step 8 Bring the register state of another process, p, back into the register file. 

Step 9 Refill the pipeline with p’s state. 

 
Assuming the conventional pipeline in Fig. 10 has s stages, step 1 will require s 
clock ticks, and hence s·tS time. Step 2, writing each register file out to memory, 
requires reading each register value into the EX stage, moving it into the MEM 
stage, and then flushing it out to memory. There are 3 clock ticks for each register 
value, but since the operations can be performed in a pipelined fashion, we 
approximate this as r·tS time total for all r registers. Step 3 requires filling up the 
pipeline to retrieve register values from memory, requiring s ticks, then writing 
each value back to the register file in the writeback stage for a total of (s + r)·tS 
time. Step 4 is filling the pipeline back up with values from the register file, but this 
can be pipelined with the register file refill and hence is already accounted for. 
Step 5 takes some unknown amount of time, tOS_NORMAL, that is dependent on the 
OS design. Steps 6 and 7 are similar to steps 1 and 2, which again require s·tS time 
and r·tS time, respectively. Step 8 is like step 3, which requires (s + r)·tS time, and 
step 9 is like step 4, which is accounted for in this time. Hence, an expression that 
approximates this entire process is given by Eq. 1 and simplified in Eq. 2. 

𝑡𝑡𝐶𝐶𝑆𝑆𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 = 𝑠𝑠𝑡𝑡𝑆𝑆 +  𝑟𝑟𝑡𝑡𝑆𝑆 +  (𝑠𝑠 + 𝑟𝑟)𝑡𝑡𝑆𝑆 +  𝑡𝑡𝑂𝑂𝑆𝑆𝐶𝐶𝐶𝐶𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 +  𝑠𝑠𝑡𝑡𝑆𝑆 +  𝑟𝑟𝑡𝑡𝑆𝑆 + (𝑠𝑠 + 𝑟𝑟)𝑡𝑡𝑆𝑆. (1) 

𝑡𝑡𝐶𝐶𝑆𝑆𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 = 4𝑡𝑡𝑆𝑆(𝑟𝑟 + 𝑠𝑠) + 𝑡𝑡𝑂𝑂𝑆𝑆𝐶𝐶𝐶𝐶𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁      (Conventional Architecture’s Context Switch Time) (2) 

3.4.3 OS Friendly Microprocessor Architecture Context Switch Modeling 
(Version 1) 

Figure 6 presents a worst-case timing diagram for the OSFA Version 1 assuming 
swapping set cache banks (instruction.swp, data.swp, register.swp, and 
pipeline_state.swp) must be loaded and written for every context switch. Data 
locality will significantly reduce the number of cache bank memory copy 
operations. The model for OSFA’s execution pipeline in Fig. 11 is same as the 
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conventional architecture described in Section 4.4.2 and Fig. 10. A more optimized 
pipeline would provide higher performance. 

The OSFA pipeline model also operates with clock period tS. In the determination 
of the clock frequency of the OSFA’s other components, the cache banks are 
divided into 3 sets: active, inactive, and swapping set. One of the register cache 
banks, register.act, is active and one of the pipeline state caches, pipeline_state.act, 
is active. These active cache banks are those that are in use by the OSFA pipeline 
in Fig. 4 and the modeled pipeline in Fig. 11. There is then a set of the other cache 
banks, instruction.bank(m)’s, data.bank(m)’s, register.bank(m)’s and 
pipeline_state.bank(m)’s, that are either flushing state out to the DMA controllers 
(instruction DMA, data DMA, register DMA, pipeline state DMA) or bring state 
back from the DMA controllers (instruction DMA, data DMA, register DMA, 
pipeline state DMA). These sets are designated as the swapping sets where  

instruction.swp = set of instruction.bank(m)’s cache memory banks, 

data.swp = set of data.bank(m)’s cache memory banks, 

register.swp = set of register.bank(m)’s cache memory banks, and  

pipeline_state.swp = set of pipeline_state.bank(m)’s cache memory 
banks. 

The cache banks not in use by the execution pipeline or DMA controllers are 
inactive or idle. 

The active components instruction.act, data.act, register.act and pipeline_state.act 
operate with clock period tS, the swapping components instruction.swp, data.swp, 
register.swp and pipeline_state.swp operate with the longer clock period tL , and the 
inactive components instruction.ina, data.ina, register.ina and pipeline_state.ina are 
idle (for static memory, clock frequency could be set to 0 Hz). 

The modeled OSFA Version 1 in Fig. 11 performs the following steps in Table 2 
during a context switch. The key feature of the OSFA is that parallelism takes place 
at various levels to reduce execution time. In step 1, all pipeline stages flush state 
to the active pipeline state cache simultaneously (see Figs. 5, 6, and 11), and hence 
this requires only one tick at the high clock rate for a time of tS.  
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Table 2 OS friendly microprocessor architecture version 1 context switch steps 

Step Description 

Step 1 Flush the pipeline state (pipeline stage latches) out to the active pipeline state cache. 

Step 2 Switch the active cache banks to the OS state 

Step 3 
If necessary (if free slots in the pipeline_state cache bank and register cache bank 
are needed), flush the contents of the previous process’ state cache banks for the 
previous process ID (PID) as described in Figure 6 . 

Step 4 Bring the OSs pipeline state back into the pipeline from the pipeline state cache. 

Step 5 Execute the standard OS operations. 

Step 6 Flush the pipeline state out to the active pipeline state cache pipeline_stage.act. 

Step 7 If necessary, fetch the state of the next process for execution from memory into the 
next process’ cache banks. 

Step 8 

Switch the active cache banks to the caches containing new (next) process (for 
example, next PID):  pipeline_state.act = pipeline_state(next PID), register.act = 
register(next PID), instruction.act = instruction(next PID), and data.act = 
data(next PID). 

Step 9 
Parallel copy the contents of the active pipeline state cache back into the pipeline 
stage latches. Section 4.4.3 describes the parallel copy for pipeline state cache 
controller and pipeline state cache banks. 

 
Step 2 also takes a single tick to switch to the set of active cache banks for the next 
PID: instruction.act = instruction(next PID), register.act = register(next PID), 
data.act = data(next PID), and pipeline_state.act = pipeline_state (next PID).  

Step 3 takes s ticks for the pipeline state cache and r ticks for the register file. 
However, these steps can be completed at the same time as steps 4–6, so as long as 
they are completed in at most the time for those steps, the pipeline will not see 
them. It is reasonable to assume that step 3 can be completed in less time (if, for 
the time being, we ignore cache misses and contention), as the pipeline state and 
register file are relatively small, while the OS must generally perform several 
system operations before switching back to a user-level process.  

Step 4 is the reverse of step 1, so it requires only a single tick.  

Step 5 still takes tOS_NORMAL as with the conventional architecture, and step 6 takes 
a single tick like step 1. Step 7 is the reverse of step 3 and requires the same amount 
of time. Again, these steps can be performed in parallel with those of steps 4–6.  

Step 8 is the same as step 2, and step 9 is the same as step 4. Each of these takes 
one tick. Hence, the total time for the OSFA context switch, 𝑡𝑡𝐶𝐶𝑆𝑆_𝑂𝑂𝑆𝑆𝑂𝑂𝑂𝑂, is found in 
Eq. 3 and simplified in Eq. 4. 
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 𝑡𝑡𝐶𝐶𝑆𝑆_𝑂𝑂𝑆𝑆𝑂𝑂𝑂𝑂 = 𝑡𝑡𝑆𝑆 +  𝑡𝑡𝑆𝑆 + 𝑡𝑡𝑆𝑆 +  𝑡𝑡𝑂𝑂𝑆𝑆_𝑁𝑁𝑂𝑂𝑁𝑁𝑁𝑁𝑂𝑂𝑁𝑁 +  𝑡𝑡𝑆𝑆 + 𝑡𝑡𝑆𝑆 + 𝑡𝑡𝑆𝑆. (3) 

 𝑡𝑡𝐶𝐶𝑆𝑆_𝑂𝑂𝑆𝑆𝑂𝑂𝑂𝑂 = 6𝑡𝑡𝑆𝑆 +   𝑡𝑡𝑂𝑂𝑆𝑆_𝑁𝑁𝑂𝑂𝑁𝑁𝑁𝑁𝑂𝑂𝑁𝑁. (4) 

We will ignore the tOS_NORMAL term by assuming it is the same for conventional and 
OSFA. The speedup offered by the OSFA for context switching is estimated to be 
𝐶𝐶𝐶𝐶_𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑂𝑂𝑆𝑆𝑂𝑂𝑂𝑂 in Eq. 5. For example, for a 5-stage pipeline, s = 5, and 32 
general-purpose registers, r = 32, this translates to an estimated theoretical speedup 
of 25 found in Eq. 5 for OSFA. This is a significant order of magnitude speedup 
improvement for the OSFA compared with the conventional processor architecture. 

𝐶𝐶𝐶𝐶_𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑂𝑂𝑆𝑆𝑂𝑂𝑂𝑂 ≈
4𝑠𝑠𝑡𝑡𝑆𝑆+4𝑟𝑟𝑡𝑡𝑆𝑆

6𝑡𝑡𝑆𝑆
≈ 2

3
(𝑠𝑠 + 𝑟𝑟) = 2

3
(5 + 32) = 25 For OSFA Context Switch. (5) 

In Eq. 6 for a large number of registers, 𝑟𝑟 ≫ 𝑠𝑠, and for 𝑡𝑡𝑂𝑂𝑆𝑆_𝑁𝑁𝑂𝑂𝑁𝑁𝑁𝑁𝑂𝑂𝑁𝑁 ≫ 6𝑡𝑡𝑆𝑆 , with 
𝑡𝑡𝑆𝑆 ≲ 1

100 MHz , the speedup is order the number of registers, 𝒪𝒪(𝑟𝑟).  

𝐶𝐶𝐶𝐶_𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑂𝑂𝑆𝑆𝑂𝑂𝑂𝑂 = 4𝑠𝑠𝑡𝑡𝑆𝑆+4𝑟𝑟𝑡𝑡𝑆𝑆+𝑡𝑡𝐶𝐶𝑆𝑆_𝐶𝐶𝐶𝐶𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁
6𝑡𝑡𝑆𝑆+𝑡𝑡𝐶𝐶𝑆𝑆_𝐶𝐶𝐶𝐶𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁

≈ 4𝑠𝑠𝑡𝑡𝑆𝑆+4𝑟𝑟𝑡𝑡𝑆𝑆+𝑡𝑡𝐶𝐶𝑆𝑆_𝐶𝐶𝐶𝐶𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁
𝑡𝑡𝐶𝐶𝑆𝑆_𝐶𝐶𝐶𝐶𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁

≈ 4𝑟𝑟
𝑡𝑡𝐶𝐶𝑆𝑆_𝐶𝐶𝐶𝐶𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁

≈ 𝒪𝒪(𝑟𝑟). (6) 

3.4.4 OS Friendly Microprocessor Architecture Context Switch Modeling 
(Version 2) 

OSFA Version 2 pipeline state cache bank in Fig. 9 has the same context switch 
speedup found in Eq. 5. The parallel memory copy for version 1 was replaced by a 
background serial memory copy as described in Section 4.3.2. The serial memory 
copy only requires a low-speed clock. Power requirements for the serial memory 
copy are less than the full parallel memory copy used in version 1 described in 
Section 4.4.3. 

4. OS Friendly Microprocessor Architecture Hardware 
Computer Security 

OS information assurance for “data” (instruction cache banks, data cache banks, 
register cache banks, pipeline state cache banks, and memory cells) is implemented 
in hardware. By extending the traditional Unix file permissions bits11–13 down to 
each memory cell, memory cache line, and cache memory bank, the OSFA provides 
hardware-level information assurance. Figure 12 illustrates hardware-level 
information assurance hierarchy and permission bits.1  
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Fig. 12 Cache bank and memory cell hardware information assurance 

4.1 Cache Bank and Memory Cell Permission Bits 

The instruction, data, register, and pipeline state cache banks have a set of OS level 
permission bits. The cache bank memory type field is used to define data types 
(e.g., data space, stack space, heap space, integer, floating point). Only the OS has 
permission to access and modify cache banks’ permission bits. OS level access to 
cache controller banks is divided into access layers (layer_0, layer_1, layer_2, etc.). 
Example permission bits are shown in Fig. 12. Each cache memory bank has 
permission bits for each memory cell. Each cache bank memory cell has permission 
bits for the OS layers and software (user level, and applications, etc.). The OS 
permission bits are further divided in OS layers (layer_0, layer_1, etc.). Additional 
permission bits can easily be added to Fig. 12. 

4.2 Instruction Permission Bits 

The OSFA also includes permission bits for additional OS level control over 
instructions and hardware. In Fig. 12, permission bit JMP provides OS level control 
of jump or branch on index register instructions. Permission bit IRegIO allows OS 
to provide an index register pointing to an I/O port or I/O memory address. The 
IRegIO bit locks out the index register (pointer). The running process is prevented 
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from accessing the contents of the register/cache bank; however, the process can 
use the index register (pointer) to read/write to I/O (registers, ports, or addresses). 
Registers can be used to define data types using 2 registers for minimum value and 
maximum value. For example, the type IOMemAddressType could be defined as 
minimum = 0, and maximum = 15. If a register of type IOMemAddressType is 
outside the minimum/maximum range, then the processor will generate an out-of-
range exception.  

4.3 Library Call Permissions 

The library function call table in Fig. 13 extends the principal of least privilege to 
the library function call level. A table listing all possible library function calls a 
software program may use is created. Each possible library function call is listed 
with typical moderate load and maximum load lower and upper limits. More limits 
could be used for finer grain control as in the example of the OpenFile( • ) library 
function call privilege limits. If the minimum number of open files is 0, the lower 
limits for cases typical, moderate, and maximum is 0. If the typically user will only 
have 5 files open at a time, the upper limit for typical is 5. Maximum load upper 
limit specifies the maximum number of files that may be open at a time. Exceeding 
the upper limits can be set to 1) require higher than user level privileges or to 2) 
generate an exception. The digital signature provides authentication of the library 
function call table and its permission settings. 

CreateWindow( •,•,• )

Typical Values Moderate Load Maximum LoadAll Library Functions
are Listed.

Digital Signature

OpenFile( •,•,• )

LibraryCall01( •,•,• )

LibraryCall02( •,•,• )

LibraryCall03( •,•,• )

OpenComPort( •,•,• )

Lower Limit Upper Limit Lower Limit Upper Limit Lower Limit Upper Limit

Lower Limit Upper Limit Lower Limit Upper Limit Lower Limit Upper Limit

Lower Limit Upper Limit Lower Limit Upper Limit Lower Limit Upper Limit

Lower Limit Upper Limit Lower Limit Upper Limit Lower Limit Upper Limit

Lower Limit Upper Limit Lower Limit Upper Limit Lower Limit Upper Limit

Lower Limit Upper Limit Lower Limit Upper Limit Lower Limit Upper Limit

Lower Limit Upper Limit Lower Limit Upper Limit Lower Limit Upper Limit

 

Fig. 13 Library function call table information assurance 
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5. OS Friendly Microprocessor Architecture Access Layers 

Figure 12 introduces the cache bank permission bits for the OSFA. The instruction, 
data, register, and pipeline state cache banks all use the same block of permission 
bits. Figure 14 focuses on the cache bank permission bits. Each cache bank contains 
a memory type field. The memory type field can be used to define stack space, heap 
space, user memory, shared memory and the like. Each cache bank contains a list 
of permission bits for the OS rings or OS layers. One possible hierarchy for the OS 
Layers is found in Table 3. The secure microkernel and microkernel drivers control 
all permission bits and manage I/O and memory allocation. 

Instruction, Data, Register, or Pipeline State Cache Bank Permission Bits

Cache Bank
Permissions

Cache Bank (m)

Cache Bank OS Permissions

Memory Type

Layer 0

Read

IRegIO

Write
Modify
JMP

Layer 1

Read

IRegIO

Write
Modify
JMP

IRegIO

Layer (n-1)

Read
Write

Modify
JMP

 

Fig. 14 OS friendly microprocessor architecture cache bank permission bits 

Table 3 Example OS friendly microprocessor architecture layer hierarchy 

Layer Number Trust Level OS Access Level 

Layer_0 Complete Secure Microkernel 
Layer_1  Microkernel Drivers 
Layer_2  Hypervisor 
Layer_3  Thick OS 
Layer_4  Dynamic Link Libraries 
Layer_5  OS Drivers 
Layer_6  • • • 
Layer_7 Untrusted Applications Software 

 
As illustrated in Fig. 5, all memory, and I/O is managed as direct memory access. 
For example, an application writes a block of data to a hard drive. The application 
executes file.create( • ). The OS level file operation calls the secure 
microkernel for an I/O port. The secure microkernel passes a pointer to an I/O port. 
The pointer to the port address is marked R W M IRegIO (read, write, and modify 
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are not allowed, IRegIO specifies pointer to I/O port). We will use the notation 
R W M for read, write, and modify are allowed. The OS cannot read, write, or 
modify the value of the pointer. The application then calls file.write( • ) using 
the pointer. The OS can only use the file pointer for I/O for the file.write( • ) 
OS library function call. Microkernel can manage (run) multiple OSs and programs 
at the same time. 

5.1 Instruction, Data, Register, and Pipeline State Memory 
Partitions 

The instruction, data, register, and pipeline state cache banks all use the same 
permission bits. The memory type field in Fig. 14 restricts the information that can 
be placed in the cache bank. For example, if the cache bank type is set to application 
data, the running task or thread cannot use the cache bank as stack space. For a 
cache bank to be used for stack space, the stack space permission bit must be set. 
For a push or pull stack operation to read or write to a stack cache bank, an index 
pointer must have stack permission bit set. Stack registers will also be marked as 
R W M (read, write, modify are not allowed), so the running task cannot modify 
the contents of the stack pointer (register). 

Instructions and data have their own stack space (cache banks). For example, an 
array of data is placed on the stack to call an OS library function. The return address 
is not data and is placed on a separate stack contained in the instruction cache bank. 
The stack spaces are not unified. The data stack does not contain any return 
addresses. The instruction stack is managed by the microkernel, so the OS and 
application do not have any direct access to the return address pointer. The return 
address pointer can also be set to R W M (read, write, modify are not allowed).  

The next section looks at permission bits for different OS access levels covered in 
Table 3. 

5.2 Permission Bits: Microkernel, Thick OS, Drivers, and 
Applications 

Figures 15–17 provide example permission bit settings. Figure 15 shows 
permission bit settings for the secure microkernel, the most secure layer. The 
microkernel has complete access. Microkernel drivers have read and write access. 
In Fig. 16, the full feature OS and dynamic link libraries are set to access layers 3 
(OS) or 4 (DLL) through n – 1. OS hardware drivers are set to read and write access 
only. The application’s permission bits are shown in Fig. 17. The multiple levels of 
permission bits allow for restricting the OS from writing to applications’ areas of 
memory. Keep in mind that each cache bank memory can have different permission 
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bit settings. The OS could have full control over one application’s cache memory 
bank and have no control or visibility to a second application’s cache memory bank. 
The large number of permission bits allows for fine grain memory access control. 
We could set the permission bits to allow a trusted application to run under an 
untrusted OS. The permission bits allow for hardware sandbox execution of 
unknown, untrusted code. The hardware permission bits require that we at least 
completely trust the secure microkernel. A formal proof of correctness or a very 
high assurance level microkernel is recommended. 
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Fig. 15 Secure microkernel cache banks and permission bits 
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Fig. 16 Thick OS cache banks and permission bits 
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Fig. 17 Application’s permission bits 

5.3 I/O Implementation 

The OSFA uses cache banks and direct memory access controllers for I/O. The 
cache bank architecture allows all I/O to have a uniform structure. In a high-level 
programming language, we use file operations like file.open( • ), 
file.write( • ), and file.read( • ). The file function calls provide a uniform 



 

Approved for public release; distribution is unlimited. 
23 

structure abstracting the low-level details away from the programmer. By using 
cache banks and direct memory access for all input and output, all I/O operations 
at the hardware level are the same. As illustrated in Fig. 18, a USB controller 
interfaces to a direct memory access controller. This allows cache banks to be the 
basic block for all input and output operations. We could replace the USB controller 
with a disk drive controller or a video graphics card. The cache bank and direct 
memory access controller provide a universal interface between the OSFA and 
other devices. 

 
Fig. 18 OS friendly microprocessor architecture I/O example 

In Fig. 18, the software applications calls the OS library function 
OS.Create.I/O_Port( • ). The OS calls the microkernel function 
MK.Create.I/O_Port( • ) to create a pointer to a cache bank. The pointer has 
permission bits set to R W M IRegIO. The OS and applications software cannot 
read, write, modify, or access the contents of the index register (pointer). All the 
OS and application know is that the index register, for example register 10 (R10), 
contains a pointer to the I/O port. Figure 19 gives a real-world example for 
comparison. The junior engineer knows the project plan is contained in the safe; 
however, he does not have access to the project plan. 

Junior engineer knows the project plan is in the safe; 
however, he does not have access to the plan.

Junior EngineerChief Engineer

Thanks.

The CEO left the 2015-16 project 
plan for you to review in the safe.

 

Fig. 19 Real-world example of OS friendly microprocessor architecture’s permission 
architecture 
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The permission bits guarantee that the pointer can be trusted by the microkernel. 
Here trust refers to software level. Only the microkernel has access to the actual 
address for the pointer to the I/O Port. The software applications in Figs. 18 and 20 
know the register number containing the I/O pointer; however, the software 
applications cannot access the contents of the register (memory address contained 
in the register).  

 

Fig. 20 For the I/O port, the application software knows the register number; however, the 
application cannot access the contents of the register 

The application places data inside the cache bank pointed to by the pointer Port. 
The application calls OS.Write.I/O_Port( • ), which simply passes the pointer 
to the hardware DMA controller to transmit the cache bank contents. In Fig. 18, the 
direct memory access controller sends the contents of the cache bank to a USB 
controller. We have several options for the lifetime of the I/O Port pointer: 1 context 
time, single read/write operation, or forever for the microkernel.  

In summary, the IRegIO permission bit restricts access to only the microkernel. 
The permission bits allow the microkernel to trust the pointer. An application passes 
the pointer to a hardware direct memory access controller to send or receive a cache 
bank size block of data. If a black hat had control of a process and could guess the 
address of a cache bank, he still would have to bypass the microkernel to set the 
IRegIO permission bit for the cache bank. The permission bits and cache bank 
architecture provide for efficient, high speed, low overhead I/O. 

5.4 Exception Handling 

Two example exceptions are illustrated in Fig. 21. A simple divide by zero error in 
the application software raises an exception handled by the OS. If the software 
application has provided an exception handler, it is called by the OS; else, the OS 
terminates the running application.  

Application

Port = OS.Create_I/O.Port( • ) 
OS.Write_I/O.Port(Port, Data) 

Bits Permissions = 
R W M RegIO 

Bits Permissions = 
R W M RegIO 

Port is a Register Number.  For example, Port = R10 
(Register 10).  Application Software knows the register 
number; however, the contents of the register cannot be 
accessed:  read, written to, modified, etc.

Port = R10

Register R10's contents 
cannot be accessed by 

the application
 

Permission Bits=  
R W M IRegIO 
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Fig. 21 Permission bits and hardware exception handling 

With the permission bits set to R W M (read, write, and modify are not allowed), if 
the application software attempts to read the Array pointer’s address, a memory 
access violation exception is raised. The OSFA hardware detects a memory access 
violation and calls microkernel to handle the exception. The system developer 
could include a microkernel driver to handle the memory exception and even allow 
reading the address contained in the pointer Array. This would be considered poor 
coding style, violate the security layer hierarchy and be an open door for hacking. 

For example, a high-performance algorithm cannot be proved to be absolutely 
numerically stable. A second moderate performance algorithm is known to be 
numerically stable is also running. If the high-performance algorithm raises an 
exception, the second algorithm is already running and can take over immediately. 

5.5 Practical Permission Bit Architecture 

Some possible OSFA access levels are shown in Table 4. The access levels are set 
by cache permission bits. Access levels are specific to the OSFA. OS rings are 
similar; however, OS rings already have an accepted definition and functions. If we 
have a trusted application, we can give the application higher-level privileges than 
an untrusted OS as illustrated in the right-hand column. The secure microkernel in 
access layers 0 and 1 has exclusive access to the hardware permission bits. No other 
layers can access the file permission bits. 
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Table 4 Some possible OS friendly microprocessor architecture access levels 

Object OS friendly microprocessor architecture access levels 
Microkernel (boot) 0 1 n/a n/a 0 
Microkernel 0 0 0 0 0, 1 
Microkernel drivers 1 1 1, 2 1, 2 2, 3 
Hypervisor n/a 2 3, 4 3  4, 5 
Thick OS 2 3 5, 6, 7 4, 5, 6, 7 7, 8, 9 
OS libraries (DLLs) 2 3 7 7, 8 10, 11 
OS drivers 2 4 8 8, 9 12, 13 
Applications 3 5 9 10, 11 6 

 

Trust Level Complete     Untrusted 
 
To illustrate some simple computer security examples, we limit the number of 
access levels to 4. We can easily increase to 8 or more for a full-featured 
architecture. The memory cost for the permission bits can be significant. For 
example, with 8 access levels, 8 permission bits, and 16 bits for the memory type, 
we would need an additional 96 bits for each cache block. For a 1-kiloword cache 
bank, this is not significant; however, for each memory cell an additional 96 bits is 
large. The OSFA Version 2 uses a 1-kiloword permission bit lookup table in a cache 
bank, which only requires 10 bits. Each memory cell would require 8 bits for 
layer_0, 8 bits for layer_1, and 10 bits for the cache lookup table (26 bits total), 
which is much more practical. Layer_0 and layer_1 permission bits are included 
for each memory cell for high-speed microkernel access. A larger cache bank is 
possible; however, at some point becomes unpractical like the 96 bits per cell 
described previously. 

The access level for mobile code is set by a trusted certificate authority and verified 
by the microkernel. Mobile code with an unverified (untrusted) certificate is 
deleted. 

An example, 4-layer permission bit architecture for the OSFA, is illustrated in 
Fig. 22. To reduce the complexity for describing the architecture’s features, we 
have limited the access layers to 4. As shown in Table 4, more access layers are 
easy to define. We consider 4 layers the minimum number of access layers for the 
OSFA. A practical number of access layers is around 8. Section 6 covers some 
computer security examples for the example architecture described in Fig. 22. 
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Fig. 22 Example 4-layer architecture 

5.6 OS Friendly Microprocessor Architecture Version 2: 
Practical Cache Bank Architecture 

An example practical cache bank and permission bit architecture is described in 
Fig. 23. A possible 256-bit cache bank header with 5 defined fields is shown. A 
larger, more complex cache bank header would be easy to define. A memory type 
field describes the type of memory contained in the cache bank. The PID field 
describes the “owner” of the cache bank. A microkernel field is defined for 
additional microkernel control over the cache bank. The undefined field may 
contain additional microkernel settings, or the OS may call the microkernel to 
include OS-related cache bank information in the undefined field. Each cache bank 
contains 256 bits (cache bank header), 64 bits per memory cell, and 32 permission 
bits per memory cell. For a 1-kiloword (8-KB) memory cache bank, 12 KB of 
memory are required. For a 4-kiloword (32-KB) cache bank, 48 KB of memory are 
required. For the example processor, we use 1 kiloword (8 KB) for the cache size. 
A good compromise for an actual microprocessor would be around 8–64 kilowords.  
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Fig. 23 Practical permission bit and cache bank architecture 

5.6.1 OS Friendly Microprocessor Architecture Version 1 Permission Bit 
Limitations 

The memory required for OSFA Version 1 permission bits is large. Most processes 
(tasks) will only require a few different permission bit settings. For the OSFA 
Version 2, we implement a cache bank lookup table with 10–16 address bits. This 
provides a lookup table with 1024–65,536 entries. With a 10-bit lookup table, we 
can get by with only 32 bits per memory cell to hold the permission bits. Without 
the lookup table, 64–96 bits per memory cell or more would be required. 

5.6.2 OS Friendly Microprocessor Architecture Version 2 Permission Bit 
Cache Bank Architecture 

Figure 24 shows the OSFA Version 2 permission bit cache bank look up table. A 
10-bit lookup table provides for 1024 different permission bit settings. Version 1 
without the lookup table would require 64–96 bits per memory cell. A 16-bit 
permission bit cache bank lookup table would provide for 64k of unique permission 
bit settings. As illustrated in Fig. 23, a 64k cache bank lookup table would only 
require 38 bits per memory cell for the cache bank permission bits. 
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Fig. 24 Cache bank permission bit lookup table 

5.7 Microkernel, OS, and Application Cache Banks Organization 

The OSFA cache bank organization, for the 4-layer model introduced in Figs. 22 
and 23, is described in Fig. 25. There are 3 groups of cache banks:  microkernel 
(layer 0), OS (layers 1 and 2), and application software (layer 3). The microkernel 
controls and configures all cache bank permission bits. The microkernel has full 
access to the OSFA’s permission bits and it is completely trusted. At the hardware 
level, all cache banks are the same. Only the instructions in the instruction cache 
banks are executed. The data, register, and pipeline state cache banks are not 
connected to the instruction decode block in the execution pipeline and cannot be 
executed.  
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Fig. 25 OS friendly microprocessor architecture cache bank organization 

5.8 Process Level Cache Bank Operations 

Figure 26 presents a simplified example of microkernel cache banks and cache bank 
contents. Figure 26 does not present the details for a complete microkernel. The 4 
cache bank pipelines, instruction, data, register, and pipeline state, are completely 
separated. The contents from one cache bank type cannot be copied to another 
cache bank type. For example, data placed on the data stack cannot be accessed by 
the instruction cache bank pipeline. Two threads, thread_0 and thread_1, are 
contained in the instruction cache bank set. Only the instruction cache bank pipeline 
connects to the OSFA’s instruction decode stage in execution pipeline. A third 
cache bank is used as a return function call stack for the microkernel.  
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Fig. 26 Microkernel cache bank organization 

Data cache banks contain data in use by thread_0 and thread_1. Each thread may 
be assigned its own stack space in the set of data cache banks. The separation of 
thread stack areas also enforces isolation between threads. Each thread, thread_0 
and thread_1, has its own set of registers in the set of register cache banks. The 
pipeline state cache banks contain the latch states from the microprocessor’s 
execution pipeline in Fig. 5. The pipeline state cache banks allow for very rapid 
context switching. Section 4.2 and Fig. 6 describe cache banks and context 
switches. Context switches for threads can be as fast as 1 CPU cycle using the 
OSFA.1 

The instruction, data, register, and pipeline state cache banks in Fig. 27 for the OS 
and applications software have the same hierarchy as the microkernel. The 
microkernel configures all cache banks and permission settings. The OS and 
applications software are “clients” to the microkernel. The microkernel manages 
all permission bit settings, hardware exceptions, I/O, memory management, and 
DMA settings for the OSFA. The cache bank architecture provides high-speed 
context switches, and very efficient I/O. 
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Fig. 27 OS and application cache bank organization 
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5.9 Cache Bank I/O Example 

We present an example in Fig. 28 showing the interaction between microkernel, 
OS, and applications software for the USB I/O example discussed in Fig. 18. We 
follow the cache bank organization and discussion found in Sections 5.7 and 5.8. 
The software application in Application Bank_0 is executing the machine code 
equivalent of the high-level instruction Port = OS.Create_I/O.Port(  ●  ). The 
OS transfers the call to the microkernel by OSPort = MK.Create_I/O.Port(  ●  ). 
The microkernel creates a pointer to a data cache bank. The application program 
has permission to write data into the cache bank; however, it cannot access the 
contents of the pointer (register). The pointer (register) contains the memory 
address of the cache bank. 

Once the data have been placed in the I/O bank for App_0, the application calls the 
OS. The OS calls the microkernel, which simply enables a direct memory access 
controller starting at the address found in the pointer Port. 
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Fig. 28 Application writes a cache bank block of data to USB controller 
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6. Computer Security Examples 

To improve system performance, the OSFA implements context switching, cache 
memory management, and resource permission bits in hardware. This architecture 
requires a secure boot to properly set up the permission hierarchy. 

The goal is to have each task run in its own hardware “sandbox”. All access points 
to control operations are managed by the hardware permission bits. All tasks are 
running in an environment without any software level access to a control or 
management level resources. In the 1970s blue box terms, we are hopefully 
blocking all paths to an in-band signaling channel.  

6.1 Buffer Overflow 

Buffer overflow attacks are described in Cowan et al.14 In telephone in-band 
signaling,3–4 a blue box5–6 was the tool needed to control the telephone network. 
Back in the 1970s, there was no authentication to prevent a prankster from using a 
blue box. In a buffer overflow attack, the attacker follows a set of steps avoiding 
any authentication to reach the goal of administrator privileges. A buffer overflow 
attack is in the same class as in-band signaling—an open door. 

All of these methods seek to alter the program’s control flow so that the program will 
jump to the attack code. The basic method is to overflow a buffer that has weak or 
non-existent bounds checking on its input with a goal of corrupting the state of an 
adjacent part of the program’s state, e.g. adjacent pointers, etc. By overflowing the 
buffer, the attacker can overwrite the adjacent program state with a near-arbitrary[15] 
sequence of bytes, resulting in an arbitrary bypass of C’s type system[16] and the victim 
program’s logic.14 

In Fig. 29, a running process executes the machine code equivalent of 
printf(“ABCDEFGHIJKLMNO”);. The string is placed on the stack and the OS function 
printf(  ) is called. The return address is placed on an instruction stack. The 
executing process can only place data on the “data stack”. The process does not 
have any access to the instruction stack. The return address is not contained on the 
“data stack”. Overwriting the data stack cannot modify the return pointer on the 
instruction stack. The OS library call will need to check the length of the string. If 
the stack was overwritten, the printf(  ) call would continue printing characters 
until a null string character was found or when the printf(  ) library function call 
tries to access memory out-of-bounds, a memory access violation error would 
occur. The process does not have access to the return address and cannot 
maliciously modify the return address.  
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0x41424344
0x45464748
0x494A4B4C
0x4D4E4F00

0x123456

Data Stack Instruction Stack

Process and OS Cannot 
Access Instruction Stack

ABCD
EFGH
IJKL

MNO-Pointer
Pointer Return Address

Process and OS
have access to stack

Printf(“ABCDEFGHIJKLMNO”);
// Place “ABCDEFGHIJKLMNO” On stack and Call OS Function //

 

Fig. 29 Process stack example 

6.2 Data Execution Exploitation 

The OSFA maintains a strong separation between instructions and data. The OSFA 
(Fig. 5) cache bank memory pipelines (instruction, data, register, and 
pipeline_state) are not unified. The pipelines are completely separated at the 
hardware level. The cache bank permission bits (Fig. 12) maintain separation of 
access layers and permission bits as described in Section 5.2. A practical cache 
bank permission bit structure is described in Fig. 23. A process level description of 
permission bits is presented in Section 5.8. Figures 26 and 27 show the strong 
separation of access layers, cache banks, and processes.  

Assume a running malware application has created a data block containing the 
machine code for a computer virus. To take control of the computer, the malware 
needs to find an open door to a microkernel level resource and attack the 
vulnerability. Assume the application, Application Bank_0, running in Fig. 27 is 
malware. The malware does not have any access to its running code in the 
instruction cache bank pipeline. The malware could create an executable virus in 
data memory. Assume Data Bank App_0 contains the machine code instructions for 
malware. The following paragraphs describe the actions malware would need to 
take to attack the architecture. 

• The malware would need to move, copy, or transfer the data cache bank into 
an instruction cache bank. Second, the malware would need to access the 
cache bank permission bits and set the “data” type to executable. The 
microprocessor architecture shown in Figs. 1 and 5 does not have any 
logical connection between data and instruction cache bank memory 
pipelines.  

• The malware could place the computer virus in Application Bank_2 cache 
bank. The cache bank permission settings set the access level for the 
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malware “application” to level 3 (untrusted). The hardware will not allow 
an access level 3 application to modify a cache bank, or I/O port. Attempting 
to write to a privileged resource would instantly raise a hardware memory 
access violation. As illustrated in Fig. 28, the malware could call the OS 
and request an I/O port. The port address is contained in a register (for 
example R10). R10 has access permission bits set to R W M IRegIO. As 
illustrated in Fig. 21, any attempt to read the address contained in Register 
R10 results in a hardware-level exception. 

The architecture’s permission bits, cache bank memory type, and cache bank 
permission bits enforce a strong separation between access levels. The conventional 
von Neumann computer architectures present numerous opportunities for malware 
to take control of what should be a trusted resource. Avoid allowing the malware 
any in-band signaling channels to exploit an attack. 

6.3 “Low-Level Driver” Protection 

We present a low-level driver example for an Ethernet interface. This example 
follows the USB and open port example found in Fig. 28. A high-level description 
of an Ethernet frame17 is found in Fig. 30. The Ethernet frame has a maximum 
length of about 1518 bytes. One Ethernet frame would fit in an OSFA 512-word 
(2 KB) cache bank.  

“Source”
Computer

Destination MAC
Address

Source MAC
Address Ethernet Type Packet Message

6 bytes 6 bytes 2 Bytes 46 to 1500 Bytes in Length

Packet

“Destination”
Computer

Ethernet Frame

Destination MAC
Address

Source MAC
Address Ethernet Type Packet Message

Ethernet Frame

Packet

 

Fig. 30 Ethernet frame 

Figure 31 illustrates an OSFA cache bank configured to hold an Ethernet packet. 
The application software calls the OS, which calls the microkernel to create a 
pointer to a cache bank. The application then calls OS and microkernel to configure 
the cache bank memory type as Ethernet. The application calls to set the source and 
destination MAC addresses; the microkernel then checks to see if the MAC 
addresses are valid. The source and destination MAC addresses are stored in the 
cache bank as R W M (not allowed by the application and OS). The source and 
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destination addresses are trusted because the permission bits block access to the 
application and OS. The microkernel checks the packet length and then configures 
the DMA controller to transfer the packet to the Ethernet controller. The cache bank 
architecture and permission bits provide a general interface for all I/O operations 
for the OSFA. 
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Fig. 31 Cache bank and Ethernet frame example 

R W M RegIO 
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see Figure 24. 
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6.4 Control Information Protection 

Computer security examples in Section 6 describe how control information is 
isolated from OS and application software access levels. All system resources are 
managed by the microkernel. The microkernel can give the OS access to system 
resources like memory; however, the OS is limited to only the resources isolated 
from the microkernel. If an application is trusted more than the OS, the microkernel 
could be configured to isolated the trusted application from an untrusted OS. 

6.5 Debugging Traps 

Program debugging at the register level can use the R W M permission bits (Read 
= allowed, Write = not allowed, and Modify = not allowed) to trap all writes made 
to a memory address or register (Fig. 32). This allows for hardware-level debugging 
with no performance overhead at the software level until a write occurs.  

 

Fig. 32 Real-time debugging trap example 

6.6 Hardware Features for Hypervisor 

Recent research work has suggested that a fully hardware level (level 0) hypervisor 
might be possible. A Lynx Technologies white paper 18 states that a level 0, chip 
level hypervisor would not require OS support. All required OS features are 
implemented at the hardware level. The goal of creating a type 0 hypervisor may 
not be possible.18–20  

R01

R02

R03

R04

R W M •••

R W M •••

R W M •••

R W M •••

R(n-1) R W M •••

When a write occurs to Register 
R4, a hardware exception is raised.  

This illustrates how the permission 
bits provide for real-time hardware 
level debugging.

Register Permission Bits
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The OSFA offers features that would help develop a future level 0 hypervisor. The 
cache bank and permission bit hierarchy offers hardware-level features needed to 
create a sublevel 1 hypervisor. For interrupt driven threads, zero overhead context 
switching is possible with the current OSFA architecture. More hardware features 
are required to come closer to a level 0 hypervisor.  

6.7 Architecture Issues 

Proprietary OS uses digitally signed drivers to reduce the chances of malware 
having easy access to protected OS resources. The OSFA has more complex 
requirements for digitally signed files. There are computer security trade-offs 
between a unified external memory (combining instructions, register, data, and 
pipeline state cache banks) and separate internal cache memories. The same issues 
are present with unified external mass storage and separate mass storage for the 4 
memory pipelines. Figure 33 presents an OSFA system based on Figs. 22–32.  
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Fig. 33 OS friendly microprocessor architecture: software and hardware hierarchy 

7. Conclusion 

We have presented an introduction to the hardware and software hierarchy for the 
OSFA and described hardware-level computer security features. The cache bank 
memory pipeline architecture and permission bits provide features to balance the 
complexities of hardware, software, and computer security. 
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List of Symbols, Abbreviations, and Acronyms 

ARL US Army Research Laboratory 

CPU central processing unit 

I/O  input/output 

ID identification 

IRegIO  Index_Register_I/O 

OS operating system 

OSFA Operating System Friendly Microprocessor Architecture 

PID process identification 

RFS Register File Set 

USB Universal Serial Bus 
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